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Gauge-invariant non-relativistic limit of an electron in a 
time-dependent electromagnetic field 
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53706. USA 
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Abstract. The Dirac equation for a charged particle in a time-dependent electromagnetic 
field is reduced to the Pauli equation in the non-relativistic limit by making a time- 
dependent Foldy-Wouthuysen transformation in a completely gauge-invariant way. In a 
time-dependent field, the expectation value of the Hamiltonian is dependent on the gauge, 
and so it cannot be the energy. The energy is obtained by taking the expectation value of the 
energy operator, the time rate of change of which is the average of the quantum mechanical 
power operator. The Hamiltonian formulation of a charged particle in a time-dependent 
external electromagnetic field is satisfactory when this distinction between the Hamiltonian, 
which describes the time evolution of the system, and the eneigy operator, which is gauge 
invariant, is made. 

1. Introduction 

For an electron in a time-dependent electromagnetic field, Goldman (1977) and Nieto 
(1977), using a time-dependent Foldy-Wouthuysen (FW) transformation (Foldy and 
Wouthuysen 1950, Pryce 1948, Tani 1951, Kurvunoglu 1956, Osch 1977, Cohen 1971) 
have recently re-examined the non-relativistic reduction of the Dirac equation to the 
Pauli equation (Pauli 1927). They showed that the non-relativistic reduction of a 
Hamiltonian unitarily equivalent to the Dirac Hamiltonian gives the Pauli Hamiltonian 
plus some additional gauge-dependent relativistic corrections. Both Goldman (1977) 
and Nieto (1977) assume that in the presence of a time-dependent electromagnetic field 
the expectation value of the Dirac Hamiltonian is the physically meaningful energy. In 
the non-relativistic limit there thus appears to be a conflict between physical meaning 
and gauge invariance, that is, in the non-relativistic limit the physical energy is 
apparently given by the expectation value of a gauge-dependent operator.’i- 

According to Goldman and Nieto this conflict arises because of the Hamiltonian 
formulation of an external field problem in a gauge theory. Goldman shows that the 
Hamiltonian for the system composed of the electromagnetic field and a charged 
particle is gauge invariant, but that the reduction to an external field problem produces 
a gauge-dependent Hamiltonian. He explains this situation by saying that changing the 
gauge ‘shifts some energy from the interactions with the external field to the (ignored) 
structure of the field itself, or vice versa’ (Goldman 1977 5 IV). Since changes in energy 

t Nieto (1977 Note 4) says that the FW transformation affects the gauge in this external field problem, and this 
is the reason for the lack of a gauge-invariant non-relativistic Hamiltonian. 

030.5-4470/80/103171+ 15$01.50 @ 1980 The Institute of Physics 3171 
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are observable, they should not be dependent on the choice of gauge. According to 
Goldman (1977 §V), however, the FW transformation which reduces the Dirac 
Hamiltonian to the Pauli Hamiltonian is an operator gauge transformation (OGT), 
which “has ‘gauged-in’ something that was defined as part of the external field.” 
Presumably, this something that is ‘gauged-in’ by making the FW transformation is 
energy that was transferred to the particle from the field, or vice versa. .However, it is 
clear that making a unitary transformation on an equation should not change physical 
quantities. 

In this paper the physical interpretation of a wave equation for a particle in a 
time-dependent external field is clarified by making the distinction between the Hamil- 
tonian and the energy 0perator.t The Hamiltonian, which is not form invariant under 
gauge transformations, describes the time evolution of the states. In contrast, the 
energy operator, which is form invariant under gauge transformations, is defined such 
that the time rate of change of its expectation value is the expectation value of the power 
operator (Yang 1976). The expectation value of the energy operator, not the Hamil- 
tonian, is the physical energy for the time-dependent case. When the expectation value 
of the energy operator in the Dirac theory is compared with the expectation value of the 
energy operator in the-Pauli theory, they are equal to a given order in u/c .  The problem 
formulated by Goldman (1977) and Nieto (1977) arises because they have not 
distinguished in the time-dependent case between the Hamiltonian and the energy 
operator. 

In the next section the form invariance of the Dirac equation under local gauge 
transformations is briefly reviewed to establish notation, and the distinction between 
the Hamiltonian and the energy operator is made. Time-dependent unitary trans- 
formations are considered in § 3. The gauge-invariant reduction of the Dirac equation 
to the Pauli equation using the FW transformation is made in § 4. The non-relativistic 
reduction of the Dirac power operator to the Pauli power operator is given in 9 5. In § 6 
a gauge-invariant perturbation theory for the Dirac equation is developed and shown to 
reduce to a gauge-invariant perturbation theory for the Pauli equation. The conclusion 
is given in 97 .  The Appendix discusses operator gauge transformations for the 
electromagnetic potentials. 

2. Gauge transformations 

The form invariance of the Schrodinger equation and the Dirac equation under local 
gauge transformations is well known (Bohm 1951), but is reviewed here to establish the 
notation. The expectation values of observables must be gauge invariant. 
Consequently, the distinction is made between the Hamiltonian, for which the expec- 
tation value is not gauge invariant, and the energy operator, for which the expectation 
value is. The time rate of change of the average of the energy operator is shown to be 
equal to the average of the quantum mechanical power operator (Yang 1976). 

t Nieto (1977 p 1043) states: ‘When one uses a particular external-field Hamiltonian in a Schrodinger (-like) 
equation, one is saying that this Hamiltonian-and this Hamiltonian alone (italics added) (up to time- 
dependent transformations)-gives both the time development of the Schrodinger (-like) equation and the 
object to consider for exact physical matrix elements’. The diagonal matrix elements would then be the 
energy, and so Nieto does not make the distinction between Hamiltonian and energy operator in the 
time-dependent case. 
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2.1. Local gauge transformations 

The Dirac equation for a particle of mass m and charge q in a classical time-dependent 
electromagnetic radiation field described by the vector and scalar potentials, A and A0 

respectively, is (Bjorken and Drell 1964) 

N(A,  Ao)+ = i a+/at. 

H ( A ,  A o)  = cy. ( p - q A  ) + pm + qAo + q V, 

(2.1) 

(2.2) 

The Hamiltonian H ( A ,  Ao) is defined as 

where the momentum operator is p = --iV. The Dirac matrices cy and ,B satisfy the 
anticommutation relations 

where ai, is the Kronecker delta and /3* = 1. The problem we consider is one in which 
there can also be an electrostatic potential V, for example, the static field of the proton 
in the hydrogen atom. In this case q V  is a potential energy, since -VqV = qEo, the 
electrostatic force acting on the electron. By definition potential energy is a quantity 
whose negative gradient is a force. In practical problems there is no difficulty in making 
this separation between the electrostatic potential energy and the scalar potential of the 
time-dependent electromagnetic radiation field. 

A local gauge transformation can be made on the wavefunction + which transforms 
it intot 

+’ = exp(iqA)+, (2.5) 

where A = h ( x )  is a function of the spatial coordinates and time x = x N  = (xo, xl, x2, x3), 
and xo = t. The Dirac equation in equation (2.1) is form invariant under the trans- 
formation in equation (2.5), since it becomes 

H ( A ’ ,  Ab)+’ = i a+’/at. (2.6) 

The new vector and scalar potentials, A‘ and Ab respectively, in equation (2.6) must be 
related to the old potentials by 

A’ = A +Vh (2.7) 

which are the usual gauge transformations of electromagnetic theory. Under these 
transformations the radiation electric field 

E = -VAo-aA/at  (2.9) 

t There is considerable confusion regarding the terminology of gauge transformations. Pauli (1941) called 
equation (2.5) a ‘gauge transformation of the first kind’ and equations (2.7) and (2.8) ‘gauge transformations 
of the second kind’. When A depends on the space and time, the gauge transformation is called ‘local’, while if 
A is a constant the gauge transformation is called ‘global’. This terminology was used by Kobe and Smirl 
(1978). On the other hand, Abers and Lee (1973) call the case where A is a constant a ‘gauge transformation 
of the first kind’ and the case where A depends on space and time, which includes equations ( 2 . 9 ,  (2.7) and 
(2.8), a ‘gauge transformation of the second kind.’ To avoid confusion, the terminology of ‘gauge trans- 
formations of the first and second kind’ is not used here. 
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and the magnetic induction 

B = V x A  (2.10) 

are invariant. Invariance of the Dirac equation under local gauge transformations is 
thus exactly the same as the invariance of the Schrodinger equation (Bohm 1951). 

2.2. Gauge invariance of operator3 

For an operator to correspond to an observable, its expectation value cannot be 
dependent on the gauge (Yang 1976, Kobe and Smirl 1978). An arbitrary operator 8 
corresponding to an observable can in general depend on the potentials, so 8 = 
O(A, Ao). However, the expectation value of an observable should be gauge invariant 
in the sense that 

( W A ,  A,)+) = ( ~ ’ I @ ( A ‘ ,  AN‘). (2.11) 

In other words, the same number should be obtained if the wavefunction 4 and 
potentials A and A. are used to calculate the expectation value, or if the wavefunction 
$‘ given in equation (2.5) and the potentials A’ and Ab given in equations (2.7) and (2.8) 
are used. However, for all operators it is true that 

(4le(A, Ad$) = ($’I@(A, AcJG’), (2.12) 

where the operator 8’ is defined as 

@‘(A, A,) = exp(iqA)O(A, Ao)  exp(-iqA). (2.13) 

Equation (2.13) is a unitary transformation on the operator 8(A, A()) ,  and is defined 
here as a ‘gauge transformation on the operator.’ The prime is used on all operators to 
denote the transformation of equation (2.13), except for the vector and scalar potentials 
where the prime denotes the gauge transformations of electrodynamics in equations 
(2.7) and (2.8). From a comparison of equations (2.11) and (2.12), for an operator to 
correspond to an observable, it must satisfy 

(2.14) 

In other words, when 8(A,Ao)  is transformed by a gauge transformation on the 
operator, the electromagnetic potentials on which the operator depends undergo a 
gauge transformation. If an operator has the property given in equation (2.14), it is said 
to be form invariant under gauge transformations. A necessary and sufficient condition 
for an operator to have il gauge invariant expectation value is that it is form invariant 
under gauge transformations. In common language, we refer to an operator as being 
gauge invariant when it is form invariant under gauge transformations. 

In order to make dear the definition of the form invariance of an oDerator under 
gauge transformations, some examples are given. The operator p - qA is form invari- 
ant under gauge transformation on the operator in equation (2.13), since 

(2.15) 

where A’ is given by equation (2.7). Likewise, the operator i a/at-qAo is also form 
invariant under gauge transformation on the operator in equation (2.1 3), since 

(2.16) 

where AI is given by equation (2.8). However, the Hamiltonian H ( A ,  Ao) is not form 

8’ (A ,  A,) = @(A’, Ab). 

( p  - qA)’ = p  -- qA’, 

(i a / a t  - qAo)‘ = i a/3 t  - qAb, 



Electron in a time-dependent electromagnetic field 3175 

invariant under gauge transformation on the operator in equation (2.13), since 

H'(A,  A,)  = H ( A ' ,  Ao) = H ( A ' ,  Ab) -t 4 ah/at. (2.17) 

The Hamiltonian for a particle in a time-dependent electromagnetic field cannot 
therefore be the energy operator since its expectation value is gauge dependent. The 
Hamiltonian depends on the gauge in such a way that the Dirac equation in equation 
(2.1) is gauge invariant, that is, is form invariant under gauge transformation. Thus the 
Hamiltonian governs the temporal development of the wavefunction $ through a 
gauge-invariant dynamical equation. 

2.3. Energy operator 

In order for an operator to correspond to the energy it is necessary for it to have (i) a 
gauge-invariant expectation value, and (ii) the time derivative of its expectation value 
equal to the average power transferred to the particle. Since the lack of gauge 
invariance of the Hamiltonian in equation (2.17) is due to the scalar potential A .  of the 
time-dependent field, let us consider the operator H ( A ,  0) which is defined as 

(2.18) 

In this time-dependent case it is shown here that H ( A ,  0), the Hamiltonian without the 
scalar potential of the time-dependent electromagnetic field, is the energy operator for 
the charged particle, not the Hamiltonian H ( A ,  Ao) .  In the time-dependent case qAo is 
not a potential energy, since the electric force qE is not -qVAo, but instead is given by 
-qVAo -q  aA/at from equation (2.9). For the electrostatic field the electric force is 
qEo = -qV V, so qV is a true potential energy. There is thus a fundamental difference 
between the time-dependent and time-independent cases (Yang 1976). Of course, the 
potential energy is not a Lorentz invariant concept, but nevertheless it can be useful. 
For example, in the hydrogen atom problem it is natural to choose the frame in which 
the proton is at rest. Then the interaction between the proton and the electron is a static 
Coulomb potential. 

The operator H(A,  0) satisfies condition (i) that its expectation value is gauge 
invariant. The operator H ( A ,  0) is form invariant under gauge transformation on the 
operator, Q '  m c e  

(2.19) 

By equation (2.14) its expectation value is therefore independent of the gauge. 
In order to show more definitively that W(A,O) is the energy operator for the 

particle, the correspondence principle can be used. If H ( A ,  0) is the energy operator, 
then according to the condition (ii) the time rate of change of its expectation value is 
(Yang 1976) 

H ( A ,  0) = H ( A ,  Ao) -qA,. 

H'(A,  0) = H ( A ' ,  8). 

d($lH(A, O)$)/dt = ($/W>, (2.20) 

where P is the power operator for the particle. Using the equation of motion in 
equation (2.1), the time rate of change of the average value of H ( A ,  0) is 

d($IH(A, O)$)/dt = -i($I[H(A, 01, H ( A ,  A o ) ~ $ )  -t ($/aH(A, o) /a t /$) .  

($bH(A, o)/atl$) = i(G1r-i a / a t ,  H ( A ,  O)I$). 

(2.21) 

The last term in equation (2.21) can be rewritten as 

(2.22) 



3176 D H Kobe and K-H Yang 

When equations (2.18) and (2.22) are substituted into equation (2.21), equation (2.20) 
is obtained with the power operator given by 

P = i[qAo - i slat, H ( A ,  O)]. (2.23) 

Because of equations (2.16) and (2.19) this operator is gauge invariant, as all physical 
observables must be. If fhe Dirac energy operator H ( A ,  0), obtained from equations 
(2.2) and (2.18), is used in equation (2.23), the power operator 

P = qa. E = q v .  E (2.24) 

is obtained, where equation (2.9) has been used for the electric field of the electromag- 
netic radiation. The velocity operator v in the Dirac theory is a, expressed in units of 
the speed of light (Bjorken and Drell 1964). Since equation (2.24) is the same form as 
the classical power, our assumption that H ( A ,  0) is the energy operator for the particle 
is verified. To emphasise the importance of the energy operator, it is denoted by 

8 ( A )  = H ( A ,  0) (2.25) 

in the following sections. 

3. Time-dependent unitary transformations 

When a unitary transformation is made on the wave equation in equation (2.1) the 
resulting equation is equivalent to it. However, in the case of a time-dependent unitary 
transformation a distinction must be made, just as in the last section, between the new 
Hamiltonian, which describes the temporal development of the transformed state, and 
the transformed energy operator. Since the original equation is invariant under gauge 
transformations, the unitarily transformed equation is also, as long as the unitary 
operator itself is gauge invariant. The point of view that considers an arbitrary unitary 
transformation as an operator gauge transformation (Goldman 1977) is discussed in the 
Appendix. 

The Dirac equation in equation (2.1) can be transformed by an arbitrary unitary 
operator U, which gives 

H U M ,  A o ) h  = i a h l a t .  (3.1) 

The unitarily transformed wavefunction is 

*U = U*, (3.2) 

HLI(A,  A,) = U H ( A ,  Ao)U-' - i U  aU-'/at. 

and the new Hamiltonian is 

(3.3) 

The presence of the last term in equation (3.3) destroys the unitary equivalence 
between the new Hamiltonian and the old one, as Nieto (1977) has pointed out. It is the 
new Hamiltonian that describes the time evolution of the new wavefunction, but in the 
time-dependent case it is not the energy. 

The energy operator %(A) of equation (2.25) can be unitarily transformed, 

%,(A) = L%(A)U-'. (3.4) 



Electron in a time-dependent electromagnetic field 3177 

The average energy of the system is thus unchanged under unitary transformation, since 
it is given by 

(+!I%(A)gl’) = (gl’ul%u(A)+!u). (3.5) 

The unitarily transformed problem is thus completely equivalent to the original 
problem. 

If a gauge transformation is made on the unitarily transformed equation, the 
equations are form invariant provided the unitary operator U is form invariant under 
gauge transformations. In general U can depend on A and Ao. The operator 
U = U(A, Ao) is gauge invariant as defined in equation (2.14) if it is form invariant 
under gauge transformations on the operator U, 

U’(A, Ao) = U(A’, Ab), 

U’(A, Ao) = exp(iqh)U(A, Ao) exp(-iqh) 

(3.6) 

(3.7) 

where 

as defined in equation (2.13). For U to be form invariant under gauge transformations, 
it must involve the form-invariant operators in equations (2.15) and (2.16) or not act on 
the space and time variables. 

Under gauge transformation equation (3.1) is form invariant in the sense that 

Hu,(A’, Ab)+!L, = i a+!;/-’/at. (3.8) 

The gauge-transformed new Hamiltonian is defined as in equation (3.3) with U, A and 
A.  replaced by U’, A’ and Ab respectively. The gauge-transformed new wavefunction 
is defined as in equation (3.2) with U and (I, replaced by U’ and 4’ respectively. The 
gauge-transformed new energy operator is 

&Yu,(A’) = U’%’(A)U’-’. (3.9) 

When the expectation value of this operator is taken in the state $Lt, the value given in 
equation (3.5) is obtained. The importance of the gauge invariance of the unitarily 
transformed Dirac equation is shown in 5 4 where the Foldy-Wouthuysen trans- 
formation is made. 

4. Foldy-Wouthuysen transformation 

The Foldy-Wouthuysen (FW) transformation (Foldy and Wouthuysen 1950) can be 
made on the Dirac equation to put it in a form in which the reduction to the 
non-relativistic Pauli equation can be made more easily (Bjorken and Drell 1964 ch 4, 
KurSunoilu 1962 pp 302-5). For a particle in a time-dependent electromagnetic 
field, the general FW transformation is a time-dependent unitary transformation of the 
kind discussed in the last section. The distinction is made in this section between the 
Hamiltonian with relativistic corrections, which describes the time development of the 
non-relativistic two-component spinor wavefunction, and the energy operator in the 
Pauli theory. 

The reduction of the Dirac equation to the Pauli equation can be made without using 
the FW transformation (Pauli 1958, Lowdin 1964, Moss 1971). The four-component 
spinor in the Dirac equation can be separated into two equations involving the large and 
small components. One of the equations can be solved for the small component in 
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terms of the large, and substituted into the other. This procedure can be performed in' a 
completely gauge-invariant way, to any order in v / c .  Consequently, it would be 
expected that the reduction based on the FW transformation could also be done in a 
gauge-invariant way. In this section the gauge invariance of the reduction is 
emphasised. 

A good discussion of the FW transformation has been given by Bjorken and Drell 
(1964 ch 4). In order to remove the 'odd' terms to order m-3 in the Hamiltonian, it is 
necessary to make a succession of three unitary transformations. The unitary operator 
U of § 3 can be written as 

U =  U,U,U, (4.1) 

U1 = exp{pa. w/2m}, (4.2) 

where 

I { 4m2 6m3 ' 
i a . q ( E o + E )  - p ( a .  w ) 3  

U2 = exp 

and 

(4.3) 

(4.4) 

The electric field of the radiation E is given by equation (2.9) and the electrostatic field 
is EO = -V V, the negative gradient of the electrostatic potential V in equation (2.2). 
The operator n is the kinematical momentum operator, 

n = p - q A ,  (4.5) 

which is gauge invariant according to equation (2.15). Since the unitary operators in 
equations (4.2)-(4.4) involve only w or E, they are gauge invariant in the sense given in 
equations (3.6) and (3.7). 

The unitary transformation in equation (4.1) can be used in equation (3.3), or the 
unitary transformations in equations (4.2)-(4.4) can be applied successively, with the 
same results. The transformed Hamiltonian in equation (3.3) becomes? 

Hu (A, Ao) = mp - m + p (a  . ~ ) ~ / 2 m  + qAo + q V - (4 /8  m *)V . (EO + E )  

+ (4/8m ')2 . [w  x (Eo + E )  - (Eo -t E )  x n] + 0(m-3) ,  

where the 4 x 4 matrix 2 is defined as 

and U are the 2 x 2 Pauli matrices. The electrostatic field is Eo = -V V. 
The Pauli equation can be obtained by applying the projection operators 

P, = $( 1 * p ) (4.8) 

(which form a resolution of the identity) to the unitarily transformed Dirac equation in 
equation (3.1). The Pauli equation is 

HP(A,  A,)@'= i &,bP/at (4.9) 

t A trivial gauge transformation on the wavefunction of exp(-imt) can be made in equation (2.1) which 
results in the subtraction of the rest energy in equation (4.6). 
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where the Pauli wavefunction is 9' = P+q%u and the Pauli Hamiltonian is HP(A,  A,) = 
P+Hu(A, A#+. In the space of 2 x 2 matrices the Pauli Hamiltonian is 

HP(A,  A,) = (1 /2m)(a .  . r r ) 2 + q A ~ + q V - ( q / 8 m 2 ) V .  ( & + E )  

- ( q / 8 m 2 ) a .  [ ( E , + E )  x .rr - v x ( E ~ + E ) ]  + ow3) ,  (4.10) 

which is the operator that describes the time evolution of the wavefunction by equation 
(4.9). The relativistic corrections in equation (4.10) are manifestly gauge invariant.? 

The Hamiltonian in equation (4.10) is not gauge invariant because of the qA, term 
in it, although the relativistic corrections are manifestly gauge invariant. Goldman 
(1977) interprets the Dirac Hamiltonian as the energy operator. He is then concerned 
because in equation (4.10) the -aA/ar part of E in equation (2.9) comes from the last 
term in equation (3.3), which he says gives a spurious contribution to the energy. 
According to him the correct energy operator for the Pauli equation would be obtained 
by omitting the last term in equation (3.3) which would make it unitarily equivalent to 
the Dirac Hamiltonian. Then the Pauli energy operator would be equation (4.10) with 
E replaced by -VAo, which is gauge dependent. He writes, 'It seems as if we have run 
into a direct conflict between physical meaning in terms of unitary equivalence and in 
terms of explicit gauge invariance . . .' (Goldman 1977). According to Goldman (1977) 
the source of this problem is 'the Hamiltonian formulation of an external field problem 
in a gauge theory.' The problem is actually due to his incorrect identification of the 
Dirac Hamiltonian H ( A ,  A,) with the energy operator in the time-dependent case. 

As we have seen in § 2, the Hamiltonian H ( A ,  A,) is not the same as the energy 
operator %'(A) = H ( A ,  0) when a time-dependent external field is applied. The uni- 
tarily transformed energy operator in equation (3.4) becomes the energy operator for 
the non-relativistic problem when the FW of equation (4.1) is used and the positive 
energy part is projected out. The Pauli energy operator %" = P+U%'(A)U-'P+ is 

8'= (1 /2m)(a .  .rr)2+qV-(q/8m2)V.E,-(q/8m2)a. ( E o x v - . r r x E o ) .  (4.11) 

The energy operator is thus the Hamiltonian in equation (4.10) without the scalar 
potential of the time-dependent field Ao, and without the time-dependent radiation 
electric field E. It is this operator 8' which should be used to calculate the energy 
expectation value in equation (3.5), not equation (4.10). It is also the operator whose 
eigenstates are the basis functions for perturbation theory. In 0 5 the non-relativistic 
limit of the power pperator in equation (2.24) is obtained. 

5. Non-relativistic limit of the power operator 

In this section we show that the expectation value of the Pauli energy operator 8' in 
equation (4.1 1) satisfies the condition that its time rate of change is equal to the average 
power transferred to the particle. This expression is the analogue for the Pauli energy 
operator of equation (2.20) for the Dirac energy operator. 

If equation (2.20) is unitarily transformed it becomes 

d(+u I 8u ( A ) h ) / d r  = (4uIPu9u) (5.1) 

t Goldman (1977), Nieto (1977) and Bjorken and Drell(1964 ch 4) have the term E X p  in their Hamiltonian 
instead of E x  n. The term E X  p is not form invariant under a gauge transformation on the operator in 
equation (2.13). 



3180 D H Kobe and K-H Yang 

where the unitarily transformed Dirac power operator P defined in equation (2.24) is 

Pu = upu-'. (5 .2)  

P + + P - = l ,  (5.3) 

(d/dt)($'I %'$'> = ($'/P'$'). (5.4) 

PP = P+ PUP,, ( 5 . 5 )  

If we insert into equation (5.1) the resolution of the identity 

where P, is given in equation (4.8), and neglect terms of O ( K ~ ) ,  we obtain 

The Pauli power operator P' is defined as 

when the unitary transformation U given in equation (4.1) is used. Equation (5.4) can 
be derived by using the fact that the negative energy part of the spinor wavefunction is 
P-t,hu = O(md3)$', which follows by applying P- to equation (3.1) and using equation 
(4.11). 

The projection operators in equation (5.5) eliminate the odd terms which appear in 
Pu and we obtain to order m-3 for the Pauli power operator 

P' = (q/2m)(n.  E + E .  V )  - ( q / 2 m ) ~ .  (dB/at) - ( q 2 / 2 m 2 ) ( ~  x Eo) . E, (5.6) 
where E is the radiation electric field in equation (2.9) and Eo is the electrostatic field, 
Eo = -V V. 

In the Pauli theory the velocity operator U is 

U = (ih)-'[r, H P ( A ,  Ao)] 

= ( I s / m ) - ( q / 4 m 2 ) a x ( E o + E ) .  (5.7) 

Therefore equation (5.6) for the Pauli power operator can be written as 

P' = ( q / 2 ) ( ~ .  E + E .  U )  - ( q / 2 m ) ~ .  (dB/dt) - (q2/4m2)[a X (Eo + E ) ]  . E. (5 .8 )  

The first term on the right-hand side of equation (5.8) is the usual Hermitian power 
operator involving the velocity operator (Yang 1976). The middle term on the 
right-hand side is the power absorbed due to the particle having a magnetic moment 
given by p = 2(q/2m)($a) which results in an energy -p  . B in the magnetic field B. To 
obtain this result Faraday's law is used. The last term is due to the spin-orbit interaction 
in equation (4.10). For a classical interpretation of all these terms see Yang and 
Hirschfelder (1979). Therefore the operator 8' is the appropriate Pauli energy 
operator, since the time rate of change of its average value is the average power 
transferred to the electron. 

6. Perturbation theory 

In order to solve the Dirac equation in equation (2.1), it is usually necessary to use 
perturbation theory. In this section a gauge-invariant perturbation theory is 
developed?, which is also shown to be invariant under arbitrary unitary trans- 
formations. In particular, the FW transformation of § 4 can be used for the unitary 
transformation and in the non-relativistic limit the resulting equation is the same as 

t For the non-relativistic case see Yang (1976) and Kobe and Smirl (1978). 
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would have been obtained by using the Pauli equation in equation (4.9). Therefore it 
makes no difference whether the perturbation theory for the Dirac equation is solved in 
the non-relativistic limit, or whether the non-relativistic Pauli equation is solved by 
perturbation theory. 

To develop a gauge-invariant perturbation theory (Yang 1976), it is necessary to use 
the eigenstates $,, of the energy operator. For the Dirac equation in equation (2.1) the 
energy operator is 8(A)  = H ( A ,  0) which satisfies the eigenvalue problem 

g(A)$n = E n 4 n ,  (6.1) 

with eigenvalues E,. Since the vector potential is a function of time, the eigenstates $, 
and eigenvalues E ,  will also be functions of time. Equation (6.1) is form invariant under 
the gauge transformation in equation (2.5). The solutions to equation (2.1) can be 
expanded in terms of the complete set of states {$,}, 

where c, is the gauge-invariant probability amplitude for finding the system in the state 
$, with energy E, .  If equation (6.2) is substituted into equation (2.1), the resulting 
gauge-invariant equation for the probability amplitudes is 

Equation (6.3) can be rewritten in terms of the power operator in equation (2.23) in the 
non-degenerate case as (Yang 1976) 

The dressed energy d, in equation (6.4) is defined as 

c n  = E n  +($nI(qAo-i a/at)+n), (6.5) 

and is gauge invariant. It is therefore the gauge-invariant power operator in equation 
(6.4) that induces the transitions between states. For the Dirac equation the power 
operator is given in equation (2.24). 

Not only is the perturbation theory invariant under gauge transformations, it is also 
invariant under the time-dependent unitary transformations discussed in 0 3. Under 
the unitary transformation U, equation (6.1) becomes 

gu(A)$nu = €,$nu, (6.6) 

where the energy operator is defined in equation (3.4) and the state is defined in 
equation (3.2). The expansion of the wavefunction in equation (6.2) becomes 

(6.7) 

The coefficients C ,  and the eigenenergies E ,  are unchanged under the unitary trans- 
formation. Equation (6.3) for the coefficients cn becomes 
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Equation (6.4) for the coefficients also has the same form after the unitary trans- 
formation, 

(6.9) 

where Zn is given by equation (6.5) with the states and operator in the matrix element 
unitarily transformed and Pu is defined in equation (5.2). 

The unitary operator U for the FW transformation i s  given by equation (4.1). The 
unperturbed eigenvalue problem in equation (6.6) then becomes 

(6.10) 

in which the energy operator is given by equation (4.1 1) and where $E = P+$,u. The 
negative energy part of the wavefunction P-$,,u = O ( K ~ ) $ ~ :  is neglected here. Equa- 
tion (6.8) then becomes 

(i a / a t  - E,)c,, = 1 ($E l{qAo - i a / a t  - (q/8m2)V. E 

P P  P 
$ n  =en$,, 

I ,  

- (q /8m2)a .  ( E  X n - x E)}$Pm)cm, (6.11) 

when equation (4.1) is used. Equation (6.11) is the equation we would obtain if we 
treated the terms in the Hamiltonian in equation (4.10) by perturbation theory?. 
Likewise equation (6.9) becomes 

(6.12) 

on neglecting the negative energy contribution to the matrix element and using the 
Pauli power operator in equation (5.5). The dressed energy is 

6, = E ,  +($El{qAo-ia/at-(4/8m2)V.E-(4/8m2)a.(Ex71-71xE)}$f:), (6.13) 

where the matrix element is the diagonal element of the interaction terms in equation 
(4.10). The Pauli power operator in this case up to order m P 3  is given in equation (5.6). 

In most cases the eigenvalue problem in equation (6.10) must be solved by 
perturbation theory for the eigenstates $E and eigenvalues E,. These would then be 
used in equation (6.11) or (6.12) to obtain the probability amplitudes c, for transitions. 
The advantage of this procedure is that it is manifestly gauge invariant, so that 
gauge-invariant results are guaranteed. 

7. Conclusion 

In this paper we have shown that in the case of an electron in an external time- 
dependent electromagnetic field, the Dirac theory reduces in a completely gauge- 
invariant way to the Pauli theory. Although in each case the Hamiltonian is not form 
invariant under gauge transformations, the energy operator i s .  The use of the energy 
operator resolves the problem formulated by Goldman (1977) and Nieto (1977) that 
the energy, which is an observable, is given by the expectation value of a gauge- 
dependent operator. 

? The term -i d / d t  on the right-hand side of equation (6.11) would not be obtained if the perturbation were 
time independent, and occurs in our case because the state $: can be time dependent. 
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In a time-dependent external electromagnetic field, the Hamiltonian determines the 
time evolution of the state vector. Its expectation value is gauge dependent, and thus 
cannot be the energy. On the other hand, the energy operator is an operator which has a 
gauge-invariant expectation value whose time rate of change is the average power 
transferred to the particle by the external field. 

Since the FW transformation is a unitary transformation which is form invariant 
under gauge transformation, it preserves the gauge invariance of the expectation value 
of the Dirac energy operator. The Dirac energy reduces to the Pauli energy to a given 
order in v / c .  There is therefore no gauge problem in the reduction of the Dirac theory 
to the Pauli theory. The physics of a slowly moving electron should not depend on 
whether it is described by the Dirac equation or the Pauli equation, or in what gauge it is 
described. The theory presented here is in keeping with these general principles of 
physics. 
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Appendix. Operator gauge transformation on electromagnetic potentials 

If it is demanded that under an arbitrary unitary transformation the transformed 
equations (3.1) have the same form as the original Dirac equation in equation (2.1), the 
electr.omagnetic potentials must undergo an operator gauge transformation (oGT):. In 
the external field problem considered here, the electromagnetic field is unquantised. 
Thus the only physically meaningful transformations of the potentials are the gauge 
transformations in equations (2.7) and (2.8). Otherwise the electric and magnetic fields 
would not be obtained from equations (2.9) and (2.10). However, there is no physical 
reason for demanding form invariance under arbitrary unitary transformations that do 
not correspond to basic symmetry principles. 

To be more specific, let us consider the conceptual difficulties which arise when it is 
demanded that equation (2.1) be form invariant under any arbitrary unitary trans- 
formation in the sense that 

where i = 1 ,2 ,3 ,  A'= Ao, and 4 But from equation (3.3) the operator describing 

t A distinction should be made between different types of operator gauge transformations. The type 
considered by Goldman (1977) are not the same as gauge transformations on the vector potential operator in 
QED (Corinaldesi and Roman 1965, Gaisser 1966). 
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the time development of = 6 is 

f i ( A i ,  A') = UH(A', A0)U-' - iU JU-llat. 

As we have seen, this operator is not the transformed energy operator, which is gu(A) .  
The demand for form invariance between equations (2.1) and (Al) requires that the 
operator fi in equation (A2) be written in the same form as equation (2.2), 

f i (A i ,  A') 3= H (A,, A') = &U", ( p 2  + qAl) + pm + qA0 + q p, (A31 

where the Einstein summation convention is used. t The operator gauge transformed 
potentials A, = (Ao, --A1, --A2, --A3) are defined as 

A, = UA,U-' - iq- lU au-llax,. 

&i = uCYiu-l, p = upu-l, (A5) 

= uvu-'. (A61 

(A4) 

The Dirac matrices in equation (A3) are also transformed: 

as well as the electrostatic potential 

However, these transformations are only of a formal significance unless equation (A4) 
reduces to equations (2.'7) and (2.8). In general, the quantities A, are no longer 
electromagnetic potentials in the usual sense. In particular, when equation (A4) is 
substituted into the right-hand side of equations (2.9) and (2.10) the result is not the 
electric and magnetic fields, unless U is the gauge transformation in equation (2.5). 
Therefore the condition of form invariance under an arbitrary unitary transformation is 
physically meaningless in this case. 

Although there is a formal similarity between equation (A4) and gauge trans- 
formations in non-Abelian gauge theories, the similarity has no physical content. The 
electromagnetic field here is unquantised and the group U( l )  for electromagnetism is 
Abelian. It is only when the unitary operator U is a representation of U( l )  that the 
transformation in equation (A4) makes physical sense for electromagnetism (Abers and 
Lee 1973 equations (1.23) and (1.36)). 
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